Human inhibin genes

Genomic characterisation and sequencing

Andrew G. Stewart, Helen M. Milborrow, Jennifer M. Ring, Carol E. Crowther and Robert G. Forage

Biotechnology Australia Pty Ltd, PO Box 20, East Roseville, New South Wales 2069, Australia

Received 23 June 1986; revised version received 11 August 1986

Inhibin is a gonadal hormone involved in the non-steroidal regulation of follicle stimulating hormone (FSH) secretion. Using the cDNAs coding for bovine inhibin A and B subunits we have identified inhibin genes within the human genome using Southern blot hybridisation techniques. The genes are likely to be present as single copies. Cloning and sequencing inhibin genes obtained from lambda libraries of human genomic DNA provide structural and sequence data on the human A and B genes. Comparison of the known inhibin gene sequences showed, in particular, that the B subunits have identical sequences in man, pigs and cattle thus demonstrating a remarkable evolutionary conservation in these genes.

Inhibin DNA hybridization Gene cloning Reproductive hormone

1. INTRODUCTION

The controversy surrounding the existence of inhibin, a hormone postulated to be produced in the gonads and involved in the feedback control of FSH secretion [1,2], has been clarified with the purification of inhibin from two animal species [3,4]. Bovine follicular fluid yielded a protein with a molecular mass of 58 kDa composed of two disulphide-linked subunits termed A and B of 43 and 15 kDa, respectively [3]. Subsequently a smaller active form (31-32 kDa) was isolated from both porcine and bovine follicular fluids with subunits A_c and B of 20 and 15 kDa, respectively [4-8]. These observations were confirmed by more detailed information on the structures of inhibin, its subunits and precursors obtained by the recent cloning of the cDNAs for the subunits of bovine, porcine, human and bovine inhibins [9-11].

This study describes the cloning and characterisation of genomic sequences of human inhibin A and B genes and examines the

homologies between three mammalian inhibin species.

2. MATERIALS AND METHODS

2.1. Southern blot analysis

Human genomic DNA from a human macrophage cell line U937 (ATCC CRL 1539) was digested with various restriction enzymes, subjected to electrophoresis on agarose gels and transferred to nitrocellulose membranes [12]. These were prehybridised by incubating in 50% formamide, $5 \times SSPE$, $5 \times Denhardt's solution$ and 25 µg/ml denatured herring sperm DNA for 4 h at 42°C, then probed with [32P]cDNA coding for substantial parts of the 43 and 15 kDa bovine inhibin subunits. For the A subunit a 725 base pair (bp) fragment of the bovine inhibin cDNA A chain gene was used (bases 242-967 [11]). For the B subunit a 358 bp fragment of the bovine cDNA B chain gene was used (bases 1-358 [11]). Labelling was performed by the oligonucleotide method [13]

and hybridisation was as for the prehybridisation but in the added presence of 10% dextran sulphate and only $1 \times Denhardt$'s solution. Filters were washed in $0.2 \times SSC$ and 0.1% SDS at $50^{\circ}C$ [12] and radioactive bands detected by autoradiography.

2.2. Isolation of human inhibin genes

Two λ bacteriophage libraries of human genomic DNA were used. One, in λ L47 [14] was used for the isolation of the A gene, the other, in the λ EMBL3 vector [15] was used for the preparation of the B gene. Plaques were transferred to nitrocellulose filters and probed with bovine inhibin cDNA fragments as described for the Southern Blot analysis. Positive plaques were purified, the DNA extracted and the insert mapped for restriction sites and partially sequenced by the dideoxynucleotide chain-termination method [16].

3. RESULTS

3.1. Inhibin sequences in the human genome

Sequences similar to or homologous with the genes coding for the large (43 kDa) or the small (15 kDa) subunits of bovine inhibin were identified in human genomic DNA by standard Southern Blot hybridisation techniques [12]. A number of fragments hybridised to cDNA coding for the large or small subunits of bovine inhibin as shown in table 1. The conditions of hybridisation and washing were such that the hybridising human DNA must be at least 75% homologous overall

Table 1

Hybridisation of bovine inhibin cDNA to human genomic DNA

Probe	Enzymes	Fragment sizes (bp)
Bovine large	PstI	2450, 1200, 480
subunit cDNA	PvuII	700
	BamHI	18000
	<i>Eco</i> RI	15000
	HindIII	20000
Bovine small	PstI	650
subunit cDNA	<i>Eco</i> RI	9000
	<i>Hin</i> dIII	11000

with the bovine cDNA. Digestion of the DNA with most of the enzymes (except PstI) resulted in the detection of a single fragment which hybridised to either the large or the small subunit probes. Human DNA, therefore, contains sequences which are at least 75% homologous with bovine inhibin genes and may represent the human inhibin genes. These genes are present in low copy number, probably unique and may not be adjacent since the probes for the large and small subunits did not hybridise to similar sized fragments.

3.2. Isolation of inhibin genes from human genomic DNA

Phages hybridising to the bovine inhibin cDNAs were isolated from libraries of human genomic DNA in bacteriophage λ . One clone, λ BTA1406, contained an insert of human DNA of 11.5 kb. Digestion with PstI vielded three fragments of about 2550, 1160 and 480 bp, respectively, which hybridised to the bovine inhibin A chain gene. These are the same fragments observed by Southern blot analysis of PstI digested genomic DNA (table 1). The nucleotide sequence of part of this insert was determined and identified it as the gene for the preproA subunit of human inhibin by homology with the bovine sequence (fig.1). In this gene there is one intron inserted in the codon for amino acid 29 which is surrounded by typical intron/exon boundaries [17]. This intron is in a similar position to one found in an unspliced bovine inhibin A chain mRNA [11]. The complete coding sequence of the human preproinhibin A chain gene is shown in fig.1. This data extends the previously published sequence which differs slightly in the N-terminal region [10]. Also shown is a comparison between the amino acid sequences of human, bovine and porcine preproinhibins which are about 84% homologous. The overall structure of the A gene is shown in fig.2.

Another clone, λ BTA1407, which hybridised to the bovine B subunit gene, contained an insert of human DNA of about 18 kb. The nucleotide sequence of part of this insert coded for the B chain of human inhibin by its homology with bovine and porcine inhibin genes (fig.3). There is a 9.7 kb intron 542 bp upstream from base position 1 as shown in fig.2. The B proteins encoded by all three genes are identical.

Human Human Bovine Porcine	1	gtg	agct	ATG Met	Val Trp	Leu	His Gln	Leu 	CTG Leu	CTG Leu	TTC Phe Leu Leu	TTG Leu	CTG Leu	CTG Leu	-50 ACC Thr Ala Ala	CCA Pro	Gln	GGT Gly Ser	Gly	CAC His	AGC Ser Gly Gly	Cys	CAG Gln His	GGG Gly	-40 CTG Leu Pro	GAG Glu	CTG Leu	GCC Ala Asp Asp	Arg	GAA Glu
Human Human Bovine Porcine	89	CTT Leu	GTT Val	CTG Leu	GCC Ala	-30 AAG Lys	GTG Val	AGG Arg	GCC Ala	CTG Leu	TTC Phe	TTG Leu	GAT Asp	GCC Ala	TTG Leu	-20 GGG Gly	CCC Pro	CCC Pro	GCG Ala Pro	Val	ACC Thr	AGG Arg Gly Gly	Glu	GGT Gly	GGG Gly	-10 GAC Asp	CCT	GGA Gly	GTC Val	: AGG : Arg
Human Human Bovine Porcine	176	CGG Arg	CTG Leu	CCC Pro His	CGA Arg	AGA	CAT	ibuni GCC Ala	CTG	GGG Gly	GGC Gly	TTC Phe	Thr Met	CAC His Arg Arg	Arg	10 GGC Gly	TCT Ser	GAG Glu	CCC Pro	GAG Glu	Glu	GAG Glu Gln	Glu	GAT Asp	GTC Val	20 TCC Ser	CAA Gln	GCC Ala	ATC Ile	CTT Leu
Human Human Bovine Porcine	263	TTC Phe		GCC Ala				ntror		.gca							Lys Glu	Ser	Ala Asp	GCC Ala	Arg	Gly 	Leu							
Human Human Bovine Porcine	345	CTC Leu			Tyr															TCA Ser										
Human Human Bovine Porcine	432	AGG Arg			Thr															CTG Leu		Pro	Gly		Pro		Ala			
Human Human Bovine Porcine	519	TCT Ser																		Leu								Leu		
Human Human Bovine Porcine	606	CTG Leu	CTG Leu	CGC Arg	TGT Cys	140 CCC Pro	CTC Leu	TGT Cys	ACC Thr Ser Ser	TGC Cys	TCA Ser	GCC Ala Thr	CGG Arg	CCT Pro	GAG	150 GCC Ala	ACG Thr	CCC Pro	TTC Phe	CTG Leu	GTG Val	GCC Ala	CAC His	ACT Thr	CGG Arg	160 ACC Thr Ala Ala	Arg	CCA Pro	CCC Pro	AGT Ser
Human Human Bovine Porcine	693	GGA Gly	GGG Gly	G A G Glu	AGA Arg	GCC Ala	170 CGA Arg	CGC Arg	TCA	ACT Thr	CCC Pro	Leu Pro	ATG Met Leu Leu	Ser Pro	TGG Trp	CCT Pro	TGG Trp	TCT Ser	CCC Pro	TCT Ser Ala Ala	GCT Ala	CTG Leu	CGC Arg	CTG Leu	CTG Leu	CAG Gln	190 AGG Arg	CCT Pro	CCG Pro	G A G Glu
Human Human Bovine Porcine	780	G AA Glu	CCG Pro	GCT Ala	GCC Ala Val	CAT His	GCC Ala	200 AAC Asn Asp Asp	TGC Cys	CAC His	AGA Arg	Val Ala	GCA Ala Ser	CTG Leu	AAC Asn	ATC Ile	TCC Ser	210 TTC Phe	C A G Gln	GAG Glu	CTG Leu	GGC Gly	TGG Trp	GAA Glu Asp Asp	CGG Arg	TGG Trp	ATC Ile	220 GTG Val	TAC Tyr His His	Pro
Human Human Bovine Porcine	867	CCC Pro	AGT Ser	TTC Phe	ATC Ile	TTC Phe	CAC His Tyr	TAC Tyr	230 TGT Cys	CAT His	GGT Gly	GGT Gly	TGT Cys	GGG Gly	CTG Leu	His Ser	ATC Ile Pro Thr	Pro	Pro	* AAC Asn Asp	CTG Leu	TCC Ser Pro Pro	CTT Leu	CCA Pro Ser	GTC Val	CCT Pro	GGG Gly	GCT Ala Val	250 CCC Pro	CCT Pro
Human Human Bovine Porcine	954	ACC Thr			Gln			Ser	TTG										GCT	270 CTC Leu										
Human Human Bovine Porcine	1041	ACC Thr	ACC Thr	TCG Ser	GAT Asp	GGA Gly	GGT Gly	TAC Tyr	TCT Ser	TTC Phe	290 AAG Lys	ТАТ Туг	GAG Glu	ACA Thr Met	GTG Val	CCC Pro	AAC Asn	CTT Leu	CTC Leu	ACG Thr	CAG Gln	CAC His	TGT Cys	GCT Ala	TGT Cys	ATC Ile	TAA ***	999	t ggg	1999

Fig.1. The nucleotide and encoded amino acid sequences of the human preproinhibin A gene. For comparison, where the bovine and porcine amino acid sequences differ from that of human inhibin the amino acid is shown. (*) Putative N-glycosylation sites. (-) Deleted amino acids.

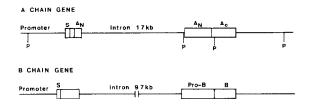


Fig. 2. Structures of the human A and B inhibin genes. The regions coding for the preproinhibin chains are boxed. P, PstI restriction sites of the A chain gene. S, putative signal sequences.

4. DISCUSSION

Protein purification studies and DNA cloning techniques have now established the protein structure of bovine, porcine and human inhibins. Mature inhibin is most likely a protein of two disulphide-linked chains A_C and B of molecular masses 20 kDa and 15 kDa, respectively, whereas precursors of inhibin of various molecular masses, notably 58 kDa, have been detected in follicular fluids [3,4]. The cloning of the cDNA genes coding

										10						
Human	Gly	Leu	Glu	Cys	Asp	Gly	Lys	Val	Asn	Ile	Cys	Cys	Lys	Lys	Gln	Phe
Human	GGC	TTG	GAG	TGT	GAT	GGC	AAG	GTC	AAC	ATC	TGC	TGT	AAG	AAA	CAG	TTC
Bovine		С			С											
Porcine		С		С	С									G		
				~												
W	Dha	1701		20	T 1200	3.00	T1.	~1··	m	8 c n	a.	m-n	30	Tla	Ala	Dro
Human Human															GCT	
Bovine	111	T	AGI	110	AAO	GAC	Т	330	100	WYI	GAC	100	AIC	711	301	CCC
Porcine		-					•			С				С		G
								40								
Human															His	
Human		GGC			GCC	AAC	TAC		GAG	GGT	GAG	TGC		AGC	CAT	ATA
Bovine	C		c	C				T		_			C		c	
Porcine	С		С	С						С			С		С	
		50										60				
Human	Ala		Thr	Ser	Glv	Ser	Ser	1.61	Ser	Phe	Hie		Thr	Val	Ile	Asn
Human		•			-										ATC	
Bovine	٠	-	A	G	C	A	C	C		T		G	G			
Porcine	G			G	Č		G	c	G	_		G	G			
						70										80
Human		-	-		-	_								-	Ser	-
Human	CAC	TAC	CGC	ATG	CGG	GGC		AGC	CCC		GCC	AAC	CTC		TCG	TGC
Bovine					_		C			C				G G		
Porcine					С		С			C				G		
Human	Ove									90						
	CYS	Val	Pro	Thr	Lys	Leu	Arq	Pro	Met	90 Ser	Met	Leu	Туг	Туг	Asp	Asp
Human										Ser					Asp GAT	
Human Bovine										Ser						
										Ser					GAT	
Bovine	TGT	GTG		ACC			AGĀ			Ser		TTG		TĀT C	GAT C	GAT
Bovine Porcine	TGT	GTG C	CCC	ACC	ĀĀG	CTG	AGĀ G	ccc	ATG	Ser TCC	ATG	TTG C	TAC	TĀT C 110	GAT C C	GAT C
Bovine Porcine Human	TGT	GTG C Gln	CCC	ACC 100 Ile	AĀG Ile	CTG Lys	AGĀ G Lys	CCC	ATG	Ser TCC	ATG Asn	TTG C Met	TAC	C 110 Val	GAT C C	GAT C Glu
Bovine Porcine Human Human	TGT C Gly GGT	GTG C Gln CAA	CCC	ACC 100 Ile	AĀG Ile	CTG Lys AAA	AGĀ G Lys	CCC	ATG Ile ATT	Ser TCC	ATG Asn	TTG C Met	TAC	C 110 Val	GAT C C	GAT C Glu
Bovine Porcine Human Human Bovine	C Gly GGT G	GTG C Gln CAA G	CCC	ACC 100 Ile	AĀG Ile	CTG Lys AAA G	AGĀ G Lys	CCC	ATG Ile ATT C	Ser TCC	ATG Asn	TTG C Met	TAC	C 110 Val	GAT C C	GAT C Glu
Bovine Porcine Human Human	TGT C Gly GGT	GTG C Gln CAA	CCC	ACC 100 Ile	AĀG Ile	CTG Lys AAA	AGĀ G Lys	CCC	ATG Ile ATT	Ser TCC	ATG Asn	TTG C Met	TAC	C 110 Val	GAT C C	GAT C Glu
Bovine Porcine Human Human Bovine	C Gly GGT G	GTG C Gln CAA G G	CCC	100 Ile ATC	Ile ATC	CTG Lys AAA G	AGĀ G Lys	CCC	ATG Ile ATT C	Ser TCC	ATG Asn	TTG C Met	TAC	C 110 Val	GAT C C	GAT C Glu
Bovine Porcine Human Human Bovine Porcine	C Gly GGT G G Cys	C Gln CAA G G G	ASD AAC	ACC 100 Ile ATC	Ile ATC	CTG Lys AAA G	AGĀ G Lys	CCC	ATG Ile ATT C	Ser TCC	ATG Asn	TTG C Met	TAC	C 110 Val	GAT C C	GAT C Glu
Bovine Porcine Human Human Bovine Porcine Human Human Bovine	Gly GGT G G CYS	C Gln CAA G G G	Asn AAC	100 Ile ATC	Ile ATC	CTG Lys AAA G	AGĀ G Lys	CCC	ATG Ile ATT C	Ser TCC	ATG Asn	TTG C Met	TAC	C 110 Val	GAT C C	GAT C Glu
Bovine Porcine Human Human Bovine Porcine Human Human	C Gly GGT G G Cys	GTG C Gln CAA G G G Gly GGG	Asn AAC	ACC 100 Ile ATC	Ile ATC	CTG Lys AAA G	AGĀ G Lys	CCC	ATG Ile ATT C	Ser TCC	ATG Asn	TTG C Met	TAC	C 110 Val	GAT C C	GAT C Glu

Fig.3. The nucleotide and encoded amino acid sequences of human inhibin B gene. For comparison, where the nucleotide sequence of the bovine or porcine cDNAs differs the base is shown.

for each of these species of inhibin shows that the two subunits arise from separate genes, as well as identifying the possible precursors of each subunit and the proteolytic cleavage sites [9-11].

Our studies confirm and extend these observations by reporting the first characterisation of human inhibin gene structure at the genomic level. From the Southern blot data the genes coding for the A and B subunits appear to be present as single copies and are not adjacent.

The β_B gene of human inhibin [10] will be described in a later publication. Its low homology with the bovine inhibin B would not permit its identification under the conditions of hybridisation used here.

A striking feature of the similarities between human, bovine and porcine inhibins is that the amino acid sequence of all three B subunits is identical: this represents an extraordinary degree of conservation. The B chains also show similarities to the A chains as well as to Mullerian inhibiting substance, a gonadal protein of importance in sexual differentiation [18], and human transforming growth factor β (TGF β) [19] suggesting a common ancestral gene.

The isolation of genes coding for animal and human inhibins has helped in our understanding of the inhibin structure. The expression of these genes in a suitable host should provide quantities of the protein hitherto unobtainable from the natural source except in trace amounts. This inhibin will be used to give a greater understanding of its physiological role in vivo, to explore the practical applications of inhibin in the manipulation of fertility and to develop sensitive diagnostic systems to evaluate the role of inhibin in human reproductive disorders.

ACKNOWLEDGEMENTS

We wish to thank Professor D.M. de Kretser and Dr D.M. Robertson of Monash University, Professor H. Burger of Prince Henry's Hospital, Dr P. Tolstoshev and Professor N. Willetts for helpful discussions. The work was funded in part by a grant from the National Biotechnology Research Programme of Australia.

REFERENCES

- [1] Baker, H.W.G., Bremner, W.J., Burger, H.G., De Kretser, D.M., Dulmanis, A., Eddie, L.W., Hudson, B., Keogh, E.J., Lee, V.W.K. and Rennie, G.C. (1976) Recent Prog. Horm. Res., 32, 429-476.
- [2] Franchimont, P., Verstraelen-Proyard, J., Hazee-Hagelstein, M.T., Renard, C.H., Demoulin, A., Bourguignon, J.P. and Husten, J. (1979) Vitam. Horm. 37, 243-302.
- [3] Robertson, D.M., Foulds, L.M., Leversha, L., Morgan, F.J., Hearn, M.T.W., Burger, H.G., Wettenhall, R.E.H. and De Kretser, D.M. (1985) Biochem. Biophys. Res. Commun. 126, 220-226.
- [4] Miyamoto, K., Hasegawa, Y., Fukuda, M., Nomura, M., Igarashi, M., Kangawa, K. and Matsuo, H. (1985) Biochem. Biophys. Res. Commun. 129, 396-403.
- [5] Ling, N., Ying, S.-Y., Ueno, N., Esch, F., Denoroy, L. and Guillemin, R. (1985) Proc. Natl. Acad. Sci. USA 82, 7217-7221.
- [6] Fukuda, M., Miyamoto, K., Hasegawa, Y., Nomura, M., Igarashi, M., Kangawa, K. and Matsuo, H. (1986) Mol. Cell. Endocrinol. 44, 55-60.
- [7] Robertson, D.M., De Vos, F.L., Foulds, L.M., McLachlan, R.I., Burger, H.G., Morgan, F.J., Hearn, M.T.W. and De Kretser, D.M. (1986) Mol. Cell Endocrinol. 44, 271-277.
- [8] Rivier, J., Spiess, J., McClintock, R., Vaughan, J. and Vale, W. (1985) Biochem. Biophys. Res. Commun. 133, 120-127.
- [9] Mason, A.J., Hayflick, J.S., Ling, N., Esch, F., Ueno, N., Ying, S.-Y., Guillemin, R., Niall, H. and Seeburg, P.H. (1985) Nature 318, 659-663.
- [10] Mason, A.J., Niall, H.D. and Seeburg, P.H. (1986) Biochem. Biophys. Res. Commun. 135, 957-964.
- [11] Forage, R.G., Ring, J.M., Brown, R.W., McInerney, B.V., Cobon, G.S., Gregson, R.P., Robertson, D.M., Morgan, F.J., Hearn, M.T.W., Findlay, J.K., Wettenhall, R.E.H., Burger, H.G. and De Kretser, D.M. (1986) Proc. Natl. Acad. Sci. USA 86, 3091-3095.
- [12] Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) in: Molecular Cloning: A Laboratory Manual, pp.76-389, Cold Spring Harbor, NY.
- [13] Feinberg, A.P. and Vogelstein, B. (1984) Anal. Biochem. 137, 266-267.
- [14] Loenen, W.A.M. and Brammar, W.J. (1980) Gene 20, 249-259.
- [15] Frischauf, A.-M., Lehrbach, H., Poustka, A. and Murray, N. (1983) J. Mol. Biol. 170, 827-842.
- [16] Sanger, F., Nicklen, S. and Coulsen, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.

- [17] Mount, S.M. (1982) Nucleic Acids Res. 10, 459-472.
- [18] Cate, R.L., Mattaliano, R.J., Hession, C., Tizard, R., Farber, N.M., Cheung, A., Ninfa, E.G., Frey, A.Z., Gash, D.J., Chow, E.P., Fisher, R.A., Bertonis, J.M., Torres, G., Wallner, B.P., Ramachandran, K.L., Ragin, R.C., Manganaro, T.F., MacLaughlin, D.T. and Donahoe, P.K. (1986) Cell 45, 685-698.
- [19] Derynck, R., Jarrett, J.A., Chen, E.Y., Eaton, D.H., Bell, J.R., Assoian, R.K., Roberts, A.B., Spann, M.B. and Goeddel, D.V. (1985) Nature 316, 701-705.